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Question: which auction maximizes seller revenue?

Issue: different auctions do better on different
valuations.

- e.g., Vickrey (second-price) auction with/without
areserve price
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Single-Item Auctions

The Setup:
* 1seller with 1 item
- n bidders, bidder i has private valuation v.

Distributional assumption: bidders’ valuations
v,,..,V_drawn independently from distributions
RN

1,..., n.

S known to seller, V.S unknown

Goal: identify auction that maximizes expected
revenue.




Optimal Single-Item
Auctions

[Myerson 81]: characterized the optimal auction, as
a function of the prior distributions F,,...,F

Pt
» Step 1: transform bids to virtual bids:—¢,(,)
formula depends on distributiop(b,) = b, —[1-E(b,)]/ f.(b,)

- Step 2: winner = highest positive virtual bid (if
any)

- Step 3: price = lowest bid that still would have
won
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Modern answer: from data (e.g., past bids).

* e.g., [Ostrovsky/Schwarz 09] fitted distributions

to past bids, applied optimal auction theory (at
Yahoo!)




Key Question

Issue: where does this prior come from?
Modern answer: from data (e.g., past bids).

Question: How much data is necessary and
sufficient to apply optimal auction theory?

» “data” = samples from unknown distributions
Bl (eios inferred from bids in previous
auctions)

» goal = near-optimal revenue [(1-
g)-approximation|

- formalism inspired by “PAC” learning theory
[ ] 1 . 41

Vapnik/Chervonenkis 7-Valiant 84|




Some Related Work

Asymptotic regime: [Neeman 03], [Segal 03],
[Baliga/Vohra 03],
[Goldberg/Hartline/Karlin/Saks/Wright 06]

- for every distribution, expected revenue approaches
optimal‘as number of samples tends to infinity
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Formalism: Single Buyer

Step 1: seller gets s samples v,,...,v_from unknown F

1200

Step 2: seller picks a price p = p(v,,...,v )
Step 3: price p applied to a fresh sample v_ , from F

m price revenue
samples — = of

ponv,,

Valuation

Goal: design p() so th@t Oy )i (1= F(p(v,..,vigiclose
to maxg}g(mat(l;@;rw at Fis)
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Results for a Single
Buyer

no assumption on F: no finite number of samples
yields non-trivial revenue guarantee (uniformly
over F)

if Fis “regular”: with s=1, setting p(v,) = v, yields a
Y2-approximation (consequence of [Bulow/Klemperer
96])

for regular F, arbitrary &: = (1/¢)’ samples

necessary and sufficient for (1-¢)-approximation
[Dhangwatnotai/Roughgarden/Yan 10],
[Huang/Mansour/Roughgarden 15]

for Fwith a monotone hazard rate, arbitrary e:
~ (1/¢)*’* samples necessary and sufficient for (1-
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Formalism: Multiple Buyers

Step 1: seller gets s samples v,,...v from F = F x.--x F.
- each v, an n-vector (one valuation per bidder)

Step 2: seller picks single-item auction A = A(v ,...,Vs)
Step 3: auction Ais run on a fresh sample v, from F

m auction revenue
samples — — of

A on \ A

valuation profile
VS
Goal: design Aso E

+1

E, [Rev(4(v Clogeto)PT

1oeeesVs




Results: Single-Item
Auctions

Theorem: [Cole/Roughgarden 14] The sample
complexity of learning a (1-¢)-approximation on an
optimal single-item auction is polynomial in n
ande™.

- n bidders, independent but non-identical regular
valuation distributions




Results: Single-Item
Auctions

Theorem: [Cole/Roughgarden 14] The sample
complexity of learning a (1-¢)-approximation on an
optimal single-item auction is polynomial in n
ande™.

- n bidders, independent but non-identical regular
valuation distributions

Optimal bound: [Guo/Huang/Zhang 19] O(n/e™)
samples.

« O(n/e?) for MHR distributions
» tight up to logarithmic factors




A General Approach

Goal: [Morgenstern/Roughgarden 15,16] seek
meta-theorem: for “simple” classes of
mechanisms, can learn a near-optimal
mechanism from few samples.

But what makes a mechanism “simple” or
“complex”?




What Is...Simple?

Simple vs. Optimal Theorem [Hartline/Roughgarden
09] (extending [Chawla/Hartline/Kleinberg 07]): in
single-parameter settings, independent but not
identical private valuations:

ted f
\e;épéz g el Y2 «(OPT expected

with monopoly KEVENLE)

reServes




Pseudodimension:
Examples

Proposed simplicity measure of a class C of
mechanisms: pseudodimension of the real valued
functions (from valuation profiles to revenue)
induced by C.




Pseudodimension:
Examples

Proposed simplicity measure of a class C of
mechanisms: pseudodimension of the real valued

functions (from valuation profiles to revenue)
induced by C.

Examples:

* Vickrey auction, anonymous reserve O(1)

» Vickrey auction, bidder-specific reserves O(n
logn)

* 1buyer, selling k items separately O(k log k)

« virtual welfare maximizers unbounded




Pseudodimension:
Implications

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low
pseudodimension, then it is easy to learn from data
the best mechanism in C.




Pseudodimension:
Implications

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has
low pseudodimension, then it is easy to learn from
data the best mechanism in C.

« obtain ¢ = SV, WV fromF, whered=
pseudodlmensmn of C, Valuatlons in [0,1]

e let M" = mechanism of C with maximum total
revenue on the samples

Guarantee: with high probability, expected
revenue of M™ (w.r.t. F) withine of optimal
mechanism in C.




Consequences

Meta-theorem: simple vs. optimal results automatically
extend from known distributions to unknown
distributions with a polynomial number of samples.

Examples:
* Vickrey auction, anonymous reserve O(1)
» Vickrey auction, bidder-specific reserves O(n
log n)
. Frand bundling/selling items separately O(k
og k) s=0Q(e7°d)
Guarantee: with , with high probability,

expected revenue of M” (w.r.t. F) withine of optimal

W\f\f\l"\f\ﬁ1om 1YY p



Simplicity-Optimality
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter
settings, independent but not identical private
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Simplicity-Optimality
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings,
independent but not identical private valuations:

expected revenue of
VCG > Y2 «(OPT expected

with monopoly revenue)

reseryes . ;

t-Level Auctions: can use t reserves per bidder.

- winner = bidder clearing max # of reserves, tiebreak by
value




Simplicity-Optimality
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings,
independent but not identical private valuations:

expected revenue of

VCG <

with monopoly
t-Laesdmesctions: can use t reserves per bidder.

« winner = bidder clearing max # of reserves, tiebreak by
value

Y2 «(OPT expected
revenue)

Theorem: (i) pseudodimension = O(nt log nt);
(ii) to get a (1-¢)-approximation, enough to take
el




Summary

key idea: weaken knowledge assumption from
known valuation distribution to sample access

learning theory offers useful framework for
reasoning about how to use data to learn a

near-optimal auction

and a formal definition of “simple” auctions ---
polynomial sample complexity (or polynomial
pseudo-dimension)

analytically tractable in many cases

future directions: (i) incentive issues in data
collection; (ii) censored data; (iii) computational
complexity issues; (iv) online version of problem
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Benefits of Approach

relatively faithful to current practices
data from recent past used to predict near future

quantify value of data

e.g., how much more data needed to improve revenue
guarantee from 90% to 95%?

suggests how to optimally use past data

optimizing from samples a potential “sweet
spot” between worst-case and average-case
analysis

inherit robustness from former, strong guarantees from
atter




Related Work

* menu complexity [Hart/Nisan 13]
measures complexity of a single deterministic mechanism

maximum number of distinct options (allocations/prices)
available to a player (ranging over others’ bids)

selling items separately = maximum-possible menu
complexity (exponential in the number of items)

- mechanism design via machine learning
[Balcan/Blum/Hartline/Mansour 08]

covering number measures complexity of a family of
auctions

rior-free setting (benchmarks instead of unknown
distributions)

near-optimal mechanisms for unlimited-supply settings




Pseudodimension:
Definition

[Pollard 84| Let F = set of real-valued functions on
X.

(for us, X = valuation profiles, F = mechanisms, range =
revenue)

F shatters a finite subset S={v,,...,v } of X if:

« there exist real-valued thresholds St such
that:

+ for every sf(lyspthokS v.in T

« there exists a function fin F such that:




Pseudodimension: Example

Let C = second-price single-item auctions with
bidder-specific reserves.

Claim: C can only shatter a subset S={Vl,...,vs} fEsh—
O(nlogn). (hence pseudodimension O(n log n))




Pseudodimension: Example

Let C = second- fplrlce single-item auctions with
bidder-specific reserves.

Claim: C can only shatter a subset S={v,...,v } if s =
O(nlogn). (hence pseudodimension O(n log n))

Proof sketch: Fix S.

 Bucket auctions of C according to relative ordering of the
n reserve prices with the ns numbers in S. (#buckets =

(ns)")
- Within a bucket, allocation is constant, revenue varies in
simple way => at most s" distinct “labelings” of S.

- Since need 2° labelings to shatter S, s = O(n log n).




