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Single-Item Auctions

The Setup:
• 1 seller with 1 item
• n bidders, bidder i has private valuation vi
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Single-Item Auctions

The Setup:
• 1 seller with 1 item
• n bidders, bidder i has private valuation vi

Question: which auction maximizes seller revenue?

Issue: different auctions do better on different 
valuations.

• e.g., Vickrey (second-price) auction with/without 
a reserve price

3



Single-Item Auctions

The Setup:
• 1 seller with 1 item
• n bidders, bidder i has private valuation vi

4



Single-Item Auctions

The Setup:
• 1 seller with 1 item
• n bidders, bidder i has private valuation vi

Distributional assumption: bidders’ valuations 
v1,...,vn drawn independently from distributions 
F1,...,Fn.

• Fi’s known to seller, vi’s unknown

Goal: identify auction that maximizes expected 
revenue. 5



Optimal Single-Item 
Auctions

[Myerson 81]: characterized the optimal auction, as 
a function of the prior distributions F1,...,Fn.

• Step 1: transform bids to virtual bids:
• formula depends on distribution: 

• Step 2: winner = highest positive virtual bid (if 
any)

• Step 3: price = lowest bid that still would have 
won
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[Myerson 81]: characterized the optimal auction, as 
a function of the prior distributions F1,...,Fn.

• Step 1: transform bids to virtual bids:
• formula depends on distribution: 

• Step 2: winner = highest positive virtual bid (if 
any)

• Step 3: price = lowest bid that still would have 
won

I.i.d. case: 2nd-price auction with monopoly reserve 
price.
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Optimal Single-Item 
Auctions

[Myerson 81]: characterized the optimal auction, as 
a function of the prior distributions F1,...,Fn.

• Step 1: transform bids to virtual bids:
• formula depends on distribution: 

• Step 2: winner = highest positive virtual bid (if 
any)

• Step 3: price = lowest bid that still would have 
won

I.i.d. case: 2nd-price auction with monopoly reserve 
price.

General case: requires full knowledge of F1,...,Fn.
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Key Question

Issue: where does this prior come from?
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Key Question

Issue: where does this prior come from?

Modern answer: from data (e.g., past bids).
• e.g., [Ostrovsky/Schwarz 09] fitted distributions 

to past bids, applied optimal auction theory (at 
Yahoo!)
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Key Question

Issue: where does this prior come from?

Modern answer: from data (e.g., past bids).

Question: How much data is necessary and 
sufficient to apply optimal auction theory?

• “data” = samples from unknown distributions 
F1,...,Fn  (e.g., inferred from bids in previous 
auctions)

• goal = near-optimal revenue [(1-
ε)-approximation]

• formalism inspired by “PAC” learning theory     
[Vapnik/Chervonenkis 71, Valiant 84]
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Some Related Work

Asymptotic regime: [Neeman 03], [Segal 03], 
[Baliga/Vohra 03], 
[Goldberg/Hartline/Karlin/Saks/Wright 06]

• for every distribution, expected revenue approaches 
optimal as number of samples tends to infinity

12



Some Related Work

Asymptotic regime: [Neeman 03], [Segal 03], 
[Baliga/Vohra 03], 
[Goldberg/Hartline/Karlin/Saks/Wright 06]

• for every distribution, expected revenue approaches 
optimal as number of samples tends to infinity

Uniform bounds for finite-sample regime: [Elkind 
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Formalism: Single Buyer

Step 1: seller gets s samples v1,...,vs from unknown F 
Step 2: seller picks a price p = p(v1,...,vs)
Step 3: price p applied to a fresh sample vs+1 from F

Goal: design p() so that                   is close 
to     (no matter what F is) 
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Results for a Single 
Buyer

1. no assumption on F: no finite number of samples 
yields non-trivial revenue guarantee (uniformly 
over F)
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Results for a Single 
Buyer

1. no assumption on F: no finite number of samples 
yields non-trivial revenue guarantee (uniformly 
over F)

2. if F is “regular”: with s=1, setting p(v1) = v1 yields a 
½-approximation (consequence of [Bulow/Klemperer 
96])

3. for regular F, arbitrary ε: ≈ (1/ε)3 samples 
necessary and sufficient for (1-ε)-approximation 
[Dhangwatnotai/Roughgarden/Yan 10], 
[Huang/Mansour/Roughgarden 15] 

4. for F with a monotone hazard rate, arbitrary ε:              
≈ (1/ε)3/2 samples necessary and sufficient for (1-
ε)-approximation [Huang/Mansour/Roughgarden 15]



Formalism: Multiple Buyers

Step 1: seller gets s samples v1,...,vs from 
• each vi an n-vector (one valuation per bidder)
Step 2: seller picks single-item auction A = A(v1,...,vs)
Step 3: auction A is run on a fresh sample vs+1 from F

Goal: design A so    close to OPT
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Results: Single-Item 
Auctions

Theorem: [Cole/Roughgarden 14]  The sample 
complexity  of learning a (1-ε)-approximation on an 
optimal single-item auction is polynomial in n 
andε-1.
• n bidders, independent but non-identical regular 

valuation distributions
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Results: Single-Item 
Auctions

Theorem: [Cole/Roughgarden 14]  The sample 
complexity  of learning a (1-ε)-approximation on an 
optimal single-item auction is polynomial in n 
andε-1.
• n bidders, independent but non-identical regular 

valuation distributions

Optimal bound: [Guo/Huang/Zhang 19] O(n/ε-3) 
samples.
• O(n/ε-2) for MHR distributions
• tight up to logarithmic factors
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A General Approach

Goal: [Morgenstern/Roughgarden 15,16] seek 
meta-theorem: for “simple” classes of 
mechanisms, can learn a near-optimal 
mechanism from few samples.

But what makes a mechanism “simple” or 
“complex”?
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What Is...Simple?

Simple vs. Optimal Theorem [Hartline/Roughgarden 
09] (extending [Chawla/Hartline/Kleinberg 07]): in 
single-parameter settings, independent but not 
identical private valuations:

          ≥

26

expected revenue of 
VCG
with monopoly 
reserves

½ •(OPT expected 
revenue)



Pseudodimension: 
Examples

Proposed simplicity measure of a class C of 
mechanisms: pseudodimension of the real valued 
functions (from  valuation profiles to revenue) 
induced by C. 
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Pseudodimension: 
Examples

Proposed simplicity measure of a class C of 
mechanisms: pseudodimension of the real valued 
functions (from  valuation profiles to revenue) 
induced by C. 

Examples: 
• Vickrey auction, anonymous reserve    O(1)
• Vickrey auction, bidder-specific reserves          O(n 

log n)
• 1 buyer, selling k items separately           O(k log k)
• virtual welfare maximizers          unbounded28



Pseudodimension: 
Implications

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has low 
pseudodimension, then it is easy to learn from data 
the   best mechanism in C.



Pseudodimension: 
Implications

Theorem: [Haussler 92], [Anthony/Bartlett 99] if C has 
low pseudodimension, then it is easy to learn from 
data the best mechanism in C.
• obtain  samples v1,...,vs from F,     where d = 

pseudodimension of C, valuations in [0,1]
• let M* = mechanism of C with maximum total 

revenue on the samples

Guarantee: with high probability, expected 
revenue of M* (w.r.t. F) withinε of optimal 
mechanism in C.



Consequences

Meta-theorem: simple vs. optimal results automatically 
extend from known distributions to unknown 
distributions with a polynomial number of samples.

Examples: 
• Vickrey auction, anonymous reserve    O(1)
• Vickrey auction, bidder-specific reserves          O(n 

log n)
• grand bundling/selling items separately           O(k 

log k)

Guarantee: with            , with high probability, 
expected revenue of M* (w.r.t. F) withinε of optimal 
mechanism in C.
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Simplicity-Optimality 
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter 
settings, independent but not identical private 
valuations:

          ≥
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Simplicity-Optimality 
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings, 
independent but not identical private valuations:

          ≥

t-Level Auctions: can use t reserves per bidder.
• winner = bidder clearing max # of reserves, tiebreak by 

value 
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Simplicity-Optimality 
Trade-Offs

Simple vs. Optimal Theorem: in single-parameter settings, 
independent but not identical private valuations:

          ≥

t-Level Auctions: can use t reserves per bidder.
• winner = bidder clearing max # of reserves, tiebreak by 

value 

Theorem: (i) pseudodimension = O(nt log nt);
(ii) to get a (1-ε)-approximation, enough to take                          
      t ≈ 1/ε

34

expected revenue of 
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½ •(OPT expected 
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Summary

• key idea: weaken knowledge assumption from 
known valuation distribution to sample access

• learning theory offers useful framework for 
reasoning about how to use data to learn a 
near-optimal auction
• and a formal definition of “simple” auctions --- 

polynomial sample complexity (or polynomial 
pseudo-dimension)

• analytically tractable in many cases
• future directions: (i) incentive issues in data 

collection; (ii) censored data; (iii) computational 
complexity issues; (iv) online version of problem35
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Benefits of Approach

• relatively faithful to current practices
• data from recent past used to predict near future

• quantify value of data
• e.g., how much more data needed to improve revenue 

guarantee from 90% to 95%?

• suggests how to optimally use past data

• optimizing from samples a potential “sweet 
spot” between worst-case and average-case 
analysis
• inherit robustness from former, strong guarantees from 

latter
37



Related Work

• menu complexity [Hart/Nisan 13]
• measures complexity of a single deterministic mechanism
• maximum number of distinct options (allocations/prices) 

available to a player (ranging over others’ bids)
• selling items separately = maximum-possible menu 

complexity (exponential in the number of items)

• mechanism design via machine learning 
[Balcan/Blum/Hartline/Mansour 08]
• covering number measures complexity of a family of 

auctions
• prior-free setting (benchmarks instead of unknown 

distributions)
• near-optimal mechanisms for unlimited-supply settings
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Pseudodimension: 
Definition

[Pollard 84]  Let F = set of real-valued functions on 
X.

(for us, X = valuation profiles, F = mechanisms, range = 
revenue)

F shatters a finite subset S={v1,...,vs} of X if:
• there exist real-valued thresholds t1,...,ts such 

that:
• for every subset T of S
• there exists a function f in F such that:

Pseudodimension: maximum size of a shattered set.

39

f(vi) ≥ ti  ⬄  vi in T 



Pseudodimension: Example

Let C = second-price single-item auctions with 
bidder-specific reserves.

Claim: C can only shatter a subset S={v1,...,vs} if s = 
O(n log n).   (hence pseudodimension O(n log n))
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Pseudodimension: Example

Let C = second-price single-item auctions with 
bidder-specific reserves.

Claim: C can only shatter a subset S={v1,...,vs} if s = 
O(n log n).   (hence pseudodimension O(n log n))

Proof sketch: Fix S.  
• Bucket auctions of C according to relative ordering of the 

n reserve prices with the ns numbers in S. (#buckets ≈ 
(ns)n)

• Within a bucket, allocation is constant, revenue varies in 
simple way => at most sn distinct “labelings” of S.

• Since need 2s labelings to shatter S, s = O(n log n). 
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